

L1 RCT Rates at $\mathcal{L}=2\times10^{33}$

Pam Chumney, Sridhara Dasu, Francesca di Lodovico, Dave Mulvihill, Raj Rajamani, Wesley Smith

Iyer Gowrishankara (New CS Graduate Student)
Creighton Hogg (New Physics Undergraduate)

University of Wisconsin

CMS WeekTrigger Meeting 5 March 2002

- New CMS Internal note ready to be published:
 - Supersedes CMS IN-2001/042
 - http://cmsdoc.cern.ch/~pamc/Trigger2e33-03-02.pdf
- Uses data generated at 2×10³³ cm⁻² s⁻¹
- Calculated proper weights for the event
- Explored effects on physics efficiencies and rates for 8 different level-1 scenarios

Simulation Introduction

Rates at LHC Turn On

- Rates were calculated using 2×10³³ data
- nTuples generated using FNAL production data
- Weighted properly improved over previous note CMS IN-2001/042
 - p_⊤'s of main event and pileup not available for TDR analysis/previous note
- No threshold increases for missing E₊ and total E₊
- QCD data produced at FNAL
 - Proper 3.5 events of pileup
 - Newer versions of CMSIM and ORCA
- More than 350,000 events in L1 Calo nTuples
- HLT p_⊤ bins from 10-1000 GeV used
- One simulation run (500 events in >350,000) in the 30-50 GeV bin was excluded because of large unphysical values of Missing $E_{\scriptscriptstyle T}$

Latest algorithms

- Jet algorithm: A programmable threshold cut is now applied to the center region of the 9 (3x3) regions.
- τ algorithm is updated to use new pattern algorithm
- Rates for new H_T Trigger see following slides

Calculation of the proper weight

The problem:

- pileup events sometimes have a larger $\hat{p}_{_T}$ than the actual "Physics" event in the QCD sample
- weight needs to take this into account
- Weight = $32 \times 10^3 \mu \div \sum_{j=1}^{N_{bin}} N_j(n_j/f_j)$ (Branson and Trepagnier)
- Use pileup \hat{p}_T 's from bunch crossing "0".

Clearly, some events' pileup has higher \hat{p}_T than the physics event

(10-15 GeV bin - 500 events)

e/γ Algorithm - unchanged

Sort over all (η,ϕ) plane to find top-4 isolated and non-isolated candidates separately.

Jet/τ Algorithm

Input from E/HCAL: Programmable 8-bit nonlinear scale converted to 10-bit linear scale for sums to obtain jet E₊

Jet or τ E_τ

- 12x12 trigger tower E_⊤ sums in 4x4 region steps with central region > others,
 central region above a programmable threshold (5 GeV for this study).

τ algorithm

- redefine jet as τ-jet if none of the nine 4x4 region τ-veto bits are on **Output**
 - top 4 τ-jets and top 4 jets in central rapidity, and top four jets in forward rapidity

Updated e/γ rates and single e efficiency

Low Luminosity e/γ trigger rates

Single e/γ Efficiency

Single e/γ at 25 GeV cutoff: 1.9 kHz and 95% efficiency at 31 GeV Single e/γ rate from CMS IN-2001/042 for a 27 GeV Cutoff:

1.7 kHz (used old 10³³ data) and 95% efficiency at 32 GeV

Consistent with TDR result for low luminosity.

Updated Jet Rates and Efficiencies

Low Luminosity Jet Trigger Rates ($|\eta|$ <5)

QCD Jet Efficiency $|\eta|$ <5

Single jet at 120 GeV: 2.2 kHz and 95% efficiency point = 143 GeV

Dijet at 90 GeV: 2.1 kHz and 95% efficiency point = 113 GeV

CMS IN-2001/042 w/10³³ data weighted to 2×10³³:

2.4 and 2.0 kHz and 95% efficiency points are 150 GeV and 115 GeV

Updated τ Rates

Low Luminosity Tau and Jet Trigger Rates

Single τ at 80 GeV: 6.1 kHz Single jet at 120 GeV: 2.2 kHz

Using new τ trigger!

Note $w/10^{33}$ data weighted to 2×10^{33} :

Single τ at 80 GeV: 6.5 kHz

Single jet at 120 GeV: 2.4 kHz

Small differences: single τ rate smoother, rate lower than the results from the note.

Updated Rate of Missing E_⊤ and efficiency

Missing E_T at 100 GeV: <0.01 kHz Note w/10³³ data weighted to 2×10³³: 0.02 kHz A data sample was excluded due to a unphysical events of Missing ET~140 and 250 GeV in the 30-50 GeV bin (Excluded from all results)

No real changes in rate vs. previous results. TDR at 0.01 kHz for 10³³ However, Efficiency turn on much sharper - 95% efficiency reached at 200 GeV vs 90% at 275!

No calibration is used yet - coming soon.

New Trigger "H_T"

Use all 12 jets: 4 each of central, τ, and forward

all jets are mutually exclusive

After correcting the jet energies, sum up E_T 's of all jets with energy greater than a certain threshold:

•
$$H_T = \sum E_{Tjet} E_{Tjet} > threshold energy$$

Advantages

- Calibrated (jet energies are calibrated)
- Simple trigger for decays of heavy objects to multiple jets

New H_T Rate

H_{τ} =sum of all jet E_{τ} 's with E_{τ} > some programmable threshold

• E_T > 10 GeV for this result

For a 400 GeV cutoff: Rate = 0.7 kHz and 95% eff = 470 GeV Nice sharp turn on.

Uses data from FNAL for \mathcal{L} =2×10³³

Trigger performance explored using new data with 2×10³³ pileup

Five scenarios for DAQ rate limits from 25 to 100 KHz

- 12.5, 10, 8, 6, and 4 kHz total calorimeter trigger rate limits
 - Rates adjusted to give emphasis to jet and combined triggers without compromising electron based channels

Three scenarios for a 50 kHz DAQ limit (as suggested by the PRS Group) based on 16 kHz total trigger rate limit (50 kHz÷3 safety factor)

- Scenario 1: 4 kHz e/ee, 4 kHz jets and τs, 4 kHz μs and 4kHz combined triggers split between calorimeter and muon triggers
 - 10 kHz for calorimeter (4e,4j,2c)
- Scenario 2: 5 kHz e/ee, 5 kHz jets and τs, 5 kHz μs and 1 kHz combined
 - 10.5 kHz for calorimeter (5e,5j,0.5c)
- Scenario 3: 4 kHz e/ee, 7 kHz jets and τs, 4 kHz μs, and 1 kHz combined
 - 11.5 kHz for calorimeter (4e,7j,0.5c)

Following Slides:

10 kHz and PRS Scenario 3 corresponding to a 50 kHz DAQ

Efficiencies for e/γ Channels: Total Calorimeter Trigger Rate=10 and 11.5 kHz

Channels used for efficiencies were generated at FNAL and Wisconsin.

Total Trigger Rate		10.4 kHz		11.7 kHz	
Channel	Triggers	Efficiency	Thresholds	Efficiency	Thresholds
W→eν	Ф	60%	25	69%	21
t→eX	e,e•τ,τ,jjj,e•j	90%	25,15•70,80,60,15•100	92%	21,10•75,85,60,10•100
Z→ee	e,ee	93%	25,13	94%	21,15
H(115)→γγ	e,ee	98%	25,13	99%	21,15
H(150)→WW→evX	e,e•τ,τ,e•j,j	82%	25,15•70,80,15•100,120	86%	21,10•75,85,10•100,110

Many of the physics channels show efficiencies above 90%.

e and ee triggers include a non-isolated electron cutoff above 45 and 25 GeV respectively.

10.4 kHz is the 10 kHz total trigger rate: more emphasis on jets and combined.

11.7 kHz is with 4 kHz e/ee, 7 kHz jets and τs, and 0.5 kHz combined (3rd PRS scenario).

11.7 kHz does better - mainly due to lower single e threshold.

Efficiencies for jet and τ Channels: Total Calorimeter Trigger Rate=12.5 and 10 kHz

Total Trigger Rate		10.4 kHz		11.7 kHz	
Channel	Triggers	Efficiency	Thresholds	Efficiency	Thresholds
H(135)→ττ→ej	e,e•τ,e•j,τ,j	77%	25,15•70,15•100,80,120	83%	21,10•75,10•100,85,110
Charged higgs (200 GeV)	τ,j,j•MET	99%	80,120,60•60	99%	80,110,60•60
H(200)→ττ→jj	τ,ττ,j,jj	89%	80,75,120,95	87%	85,75,110,90
H(500)→ττ→jj	τ,ττ,j,jj	99%	80,75,120,95	99%	85,75,110,90
t→jets	HT,jjjj,jjj,jj,j	64%	400,55,60,95,120	70%	400,50,60,90,110
mSUGRA (pt. 3)	j	99%	120	99%	110
H(120)→bb	jjj,j,τ,jj	52%	60,120,80,95	52%	60,110,85,90
Invisible higgs (120 GeV)	j•MET,j,τ	46%	60•60,120,80	46%	60•60,110,85

Many of the triggers show efficiencies above or near 90%.

e trigger includes a non-isolated electron cutoff above 45 GeV.

Some have a lower efficiency than are in the CMS IN-2001/042 - a bug found in our nTuple Generator was not zeroing the jet energies properly.

- 10.4 kHz is the 10 kHz total trigger rate: more emphasis on jets and combined triggers.
- 11.7 kHz is with 4 kHz e/ee, 7 kHz jets and τs, and 0.5 kHz combined (3rd PRS scenario).

11.7 kHz does a bit better than 10.4 kHz - combined with e/γ results→ best combination to get the physics

Summary

Rates for $\mathcal{L}=2\times10^{33}$ cm⁻² s⁻¹ calculated:

- No significant rate changes due to changes in algorithms
- Proper weighting dramatically reduces rates for most channels
 - p_T's of pileup events were greater than QCD physics event.
- Results are consistent with earlier TDR results
- Thresholds retuned for different DAQ staging scenarios of 12.5, 10, 8,
 6, and 4 kHz
- 3 new PRS Scenarios evaluated and thresholds tuned
- Optimized for physics performance
- Favorite scenario: PRS #3 with 11.5 kHz target rate (4/7/0.5 kHz of e/j/combined)
- Note ready: http://cmsdoc.cern.ch/~pamc/Trigger2e33-03-02.pdf
 - Supersedes CMS IN-2001/042
 - proper weights
 - 3.5 pileup events per interaction
 - more detail on efficiencies